The generator matrix

 1  0  0  0  1  1  1  0  1  1  1  1  X  X  X  1  X  0  X  0  1  1  1  1  1  1  X  1  X  1  1  1  0  1  X  0  X  1  0  1  X  1  0  X  1
 0  1  0  0  0  1  1  1  X  0 X+1 X+1  1  1  X  1  1  X  0  1  X  1 X+1  0  1  1  1  0  1  0  1 X+1  1  0  1  1  X X+1  1  X  1  1  1  1  0
 0  0  1  0  1  1  0  1  0 X+1 X+1  X  X X+1  1  X  X  1  0 X+1  1  X  X X+1 X+1  1  1  X  1  X  1  1  X  0  1  1  X  0  0  X X+1  X  0  1  0
 0  0  0  1  1  0  1  1  1  0  1  X X+1  0 X+1  1  1 X+1  1 X+1 X+1  1  X  0 X+1 X+1  0  X  0  1  X  1  0 X+1 X+1  X  1  X  1 X+1  1 X+1  X  X  0
 0  0  0  0  X  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  X  X  X  X  X  X  X  X  X  X  X  X  X  X  X  0  X  0  X  X  0  0  X
 0  0  0  0  0  X  0  0  0  0  0  0  X  0  0  0  X  X  X  0  X  X  X  0  X  0  X  0  0  X  X  X  0  0  X  X  0  0  X  X  0  X  X  X  0
 0  0  0  0  0  0  X  0  0  0  0  0  0  X  X  X  0  0  X  X  X  X  0  X  0  X  0  X  0  X  X  0  0  X  X  X  X  0  0  X  0  X  X  X  X
 0  0  0  0  0  0  0  X  X  X  0  X  X  X  X  X  0  X  X  0  X  X  0  X  0  0  0  0  X  X  0  X  X  0  X  X  0  0  X  0  X  X  0  X  X

generates a code of length 45 over Z2[X]/(X^2) who�s minimum homogenous weight is 36.

Homogenous weight enumerator: w(x)=1x^0+120x^36+280x^38+558x^40+528x^42+600x^44+564x^46+570x^48+428x^50+268x^52+116x^54+54x^56+4x^58+4x^60+1x^64

The gray image is a linear code over GF(2) with n=90, k=12 and d=36.
This code was found by Heurico 1.16 in 1.43 seconds.